
18 The Delphi Magazine Issue 25

In the summer of 1986, the song
“Hip To Be Square” by Huey

Lewis and The News was a favorite
on the American pop music charts.
Being square might be OK for Huey
Lewis, but what about windows?
Since the premiere of Windows 1.0,
windows have always been square
or rectangular. Do our windows
always have to be rectangular?

I’m going to tell you that the
answer is no! At least not in
Windows 95 or NT. In Windows NT
3.51 the Win32 API introduced the
SetWindowRegion function. This
function instructs the operating
system to draw any portion of a
window inside the indicated region
only. Since this technique is only
available in Windows NT and
Windows 95, you’ll need either
Delphi 2 or 3. One sample of this
technique is the clock included
with the Microsoft PowerToys
add-on for Windows 95. This clock
can have a traditional round clock
face and shape and be dragged all
over the screen.

In Windows a region can be a
rectangle, ellipse, polygon or a
combination of two or more of
these shapes. The Win32 API
allows us to create any shaped
region we conceive. These regions
can be filled, outlined, inverted,
framed, or used for hit-testing
(testing mouse down location),
among other things. Once you
have defined a region, you pass it
to the SetWindowRgn API function.
This makes it possible to have
windows that are anything but
square.

All windows have clipping
regions that define the area in
which Windows allows drawing to
occur. Clipping regions are up-
dated whenever a window is
resized and when another window
partially covers or uncovers a
window. SetWindowRgn further
restricts drawing to just within the
region passed to it.

I probably wouldn’t want to have
a database application that is

shaped like a Christmas tree, but
there are many possibilities where
you might want a window that is,
say, round. Suppose we were
designing a new war game using
Delphi. In one corner of the screen
we could display a radar screen or
resource gauge that is round. By
making this a round window, the
user could drag it to anywhere on
the screen and it would block
about 30% less of the screen than a
square window.

Another place where an oddly
shaped window might be appro-
priate is as a splash screen. I use
splash screens in all my applica-
tions. This gives the user some-
thing to look at while the program
loads, and also gives me an oppor-
tunity to take credit for all my hard
work. Instead of placing the

Who Said It’s Hip To Be Square?
by Steven Colagiovanni

client’s logo in a rectangular
window (along with our copyright
line), we could build a splash
screen that is also shaped like the
client’s logo. It’s sad to say, but
customers are not impressed that
we spend hours tweaking the code
to improve performance, or that all
our database tables are normal-
ized. However, give them some-
thing like a custom shaped splash
screen, and you’ll hear lots of oohs
and ahs.

Simple Shapes
Let’s assume that we are building
an application for a company
whose logo is always displayed
against a blue oval. We can have an
oval shaped window with the com-
pany logo inside along with our
copyright (see Figure 1). In the

➤ Figure 1

procedure TfrmEllipse.FormCreate(Sender: TObject);
var
Region: hRgn;

begin
{ Create region, or window boundaries }
Region := CreateEllipticRgn(0, 0, Width, Height);
{ Assign the region to the window }
SetWindowRgn(Handle, Region, True);
{ Do not delete region - Windows now has control of the region. }

end;

➤ Listing 1

September 1997 The Delphi Magazine 19

procedure TfrmEllipse.FormPaint(Sender: TObject);
begin
{ Paint window border }
with canvas do
begin
Pen.Color := clBlack;
Pen.Width := 2;
Ellipse(1, 1, width-2, height-2);

end;
end;

➤ Listing 2

➤ Figure 2

procedure TfrmBowTie.FormCreate(Sender: TObject);
var
Region: hRgn;
RgnPts: array[0..11] of TPoint;//Window region (outline)

Const
nPts: integer= 12;

begin
{ Set points of polygon for window border }
RgnPts[0] := Point(30, 12);
RgnPts[1] := Point(125, 12);
RgnPts[2] := Point(125, 0);
RgnPts[3] := Point(250, 0);
RgnPts[4] := Point(250, 12);
RgnPts[5] := Point(375, 12);
RgnPts[6] := Point(345, 81);
RgnPts[7] := Point(250, 81);
RgnPts[8] := Point(250, 93);
RgnPts[9] := Point(125, 93);
RgnPts[10] := Point(125, 81);
RgnPts[11] := Point(0, 81);
{ Create region, or window boundaries from the polygon }
Region := CreatePolygonRgn(RgnPts[0], nPts, ALTERNATE);
{ Assign the region to the window }
SetWindowRgn(Handle, Region, True);

end;

➤ Listing 3

FormCreate event, place the code in
Listing 1. When the window is cre-
ated, an elliptic region (oval) is cre-
ated with the CreateEllipticRgn
API call, where nLeftRect and nTo-
pRect are respectively the X and Y
cordinates of the upper-left corner,
and nRightRect and nBottomRect are
respectively the X and Y coordin-
ates for the lower-right corner. All
these parameters are integers.

That region is then assigned to
the window, which takes on the
shape of our oval. If you want the
user to be able to resize the
window, you will have to repeat or
call this code in the FormResize
event, so that the oval can be
resized.

Normally, when you create GDI
objects such as pens, brushes and
regions, you typically delete them.
Fortunately the VCL takes care of
this for us. However, when you
pass a region handle to SetWin-
dowRgn, the operating system takes
control of that object, and you
must not attempt to use it for any-
thing, or destroy it after this call.

After the oddly shaped window
is created, you then have to draw
what you want visible on that
window. Either the form’s compo-
nents are automatically painted, or
we can place code in the FormPaint
event to paint and draw what we
want to display on the window. The
black line around the outside of the
oval is added in the FormPaint
event. See Listing 2.

You will find that writing code to
paint the form produces a faster
display than placing several graph-
ics components on the form. For
the oval I used labels with a shape
component to demonstrate the
speed difference. Compare the
painting of this form with several of
the other examples in the demo
program.

Polygons
Ovals and circles are easy. For a
circle, just make certain that the
width and height of the Elliptic
region are equal. What about more
complex shapes? We can also
create polygons and rectangles or
squares with rounded corners.
The methods for all of these are
listed in Table 1. Information on

these methods can be found in the
Win32 Programmer’s Reference
(WIN32.HLP) which is included
with Delphi 2.

Creating a polygon is easy, but
you have to plot all the points that
define the polygon region. You
pass the CreatePolygonRgn API
function an array of TPoint
structures defining the polygonal
region and the number of points in
the polygon. If you look at Listing 3,
you’ll notice that the 12 points of
the polygon are assigned. Each one
of these points is connected by a
line, in the order given, with the
last point being connected to the
first. Windows assumes the

polygon is closed. The last para-
meter of CreatePolygonRgn speci-
fies the polygon fill mode which
chooses the method Windows will
use when painting the polygon.
The mode is either WINDING or
ALTERNATE.

I have found that ALTERNATE is
slightly faster. The resulting
window is shown in Figure 2.

Keep in mind that window
regions use coordinates relative to
the upper-left corner of the
window, while drawing and paint-
ing functions use coordinates rela-
tive to the device context. The
device context of the window is
equivalent to the form’s client

20 The Delphi Magazine Issue 25

area. If you want to draw within the
window region, you need to offset
the window region’s points from
your form’s coordinates. One way
to do this is to add the values for
border width and caption height
returned by the GetSystemMetrics
function to the coordinates you’ll
use for drawing on the form. An
easier way is to set the form’s
border style to bsNone.

Who Put A Hole
In My Window?
The CombineRgn function allows us
to combine regions in several
ways. We can merge two regions so
that the final region is the sum of
both (RGN_OR). We can also remove
a region from an existing region or
window. If we create the first
region as a circle and a second
region that is a smaller circle in the
center of the first, we can produce
a final region that is shaped like a
donut, complete with the hole in
the middle. You can see the back-
ground through the hole and even
click on icons and windows
through the hole!

Figure 3 shows the logo for a ficti-
tious photographic laboratory.
The window was created by com-
bining three regions. A polygon
region (for the film strip) was com-
bined with a circle (elliptical
region) for the illustration of the
lens aperture. This produced the
outline of the window. Then the
resulting region was combined
with a small polygon near the
center using the RGN_DIFF combine
mode. This center polygon forms
the opening in the center of the
lens aperture and has resulted in a
hole in our window.

Listing 4 shows the FormCreate
event for this window. The

CalcRgnPoints procedure places
the points of the two polygons into
two TPoint arrays. The region for
the filmstrip is used by the Create-
PolygonRgn function to create
Region 2. Region 1 is a circle that is
created with the CreateEllip-
ticRgn. The two regions are
merged into one with the Com-
bineRgn function, using the RGN_OR
combine mode. The CreatePoly-
gonRgn function uses the TPoint
array for the aperture and assigns
this to Region 2. The CombineRgn
function is called again, this time
using the RGN_DIFF combine mode
to punch a hole in the middle of the
window. The resulting region is

then assigned to the window. Table
2 lists the combine modes.

The logo itself is a bitmap, which
is stored in an image component
with its visible property set to
false. The image is painted onto the
form with the Canvas.Draw function.
This was faster than allowing the
image component to paint itself.
The code for the FormPaint event is
in Listing 5.

Including the Titlebar
We can also include the titlebar in
oddly shaped windows. Figure 4

➤ Figure 3

var
RgnPts: array[0..6] of TPoint; // Outline of hole
FlmPts: array[0..7] of TPoint; // Outline of film strip

Const
rPts: integer = 7;
fPts: integer = 8;

procedure TfrmAperture.FormCreate(Sender: TObject);
var Region1, Region2: hRgn;
begin
{ Construct Polygons for film strip and hole }
CalcRgnPoints;
{ Create first region, the circle }
Region1 := CreateEllipticRgn(30, 10, ClientWidth, ClientHeight);
{ Create second region, the polygon for the film strip }
Region2 := CreatePolygonRgn(FlmPts[0], fPts, ALTERNATE);
{ Combine the regions, into one region }
CombineRgn(Region1, Region1, Region2, RGN_OR);
{ Create third region, the hole in the center }
Region2 := CreatePolygonRgn(RgnPts[0], rPts, ALTERNATE);
{ Create a region that consists of the current region,

minus the third region (the hole) }
CombineRgn(Region1, Region1, Region2, RGN_DIFF);
{ Assign the region to the window }
SetWindowRgn(Handle, Region1, True);

end;

➤ Listing 4

procedure TfrmAperture.FormPaint(Sender: TObject);
begin
with canvas do begin
// copy image to window
Draw(0, 0, Image1.Picture.Bitmap);
Brush.Style := bsClear;
{ Outline circle for better visibility }
Pen.Color := clBlack;
Pen.Width := 2;
Ellipse(31, 11, width-1, height-1);

end;
end;

➤ Listing 5

CreateEllipticRgn Creates an elliptical region

CreateEllipticRgnIndirect Creates an elliptical region given a RECT structure

CreatePolygonRgn Creates a polygonal region

CreatePolyPolygonRgn Creates a region based on multiple polygons

CreateRectRgn Creates a rectangular region

CreateRectRgnIndirect Creates rectangular region given a RECT structure

CreateRoundRectRgn Creates rectangular region with rounded corners

➤ Table 1: Methods for creating regions

September 1997 The Delphi Magazine 21

shows an oddly shaped window
with a title bar. The title bar was
included within a polygon outline
that was passed to the CreatePoly-
gonRgn function.

The Width of the titlebar is
obviously the same as the form’s
width, but the height of the titlebar
is the sum of the thickness of the
top window frame and the height of
the window caption. Fortunately,
Windows will tell us what these
dimensions are with the GetSys-
temMetrics function:

TitlebarHeight :=

GetSystemMetrics(SM_CYCAPTION) +

GetSystemMetrics(SM_CYDLGFRAME)+1;

The form width and TitlebarHeight
are then used to set the bottom
right point of the title bar.

By now you may be wondering if
an oddly shaped window can be
returned to its standard rectangu-
lar shape. By calling SetWindowRgn
and passing NULL (zero in Delphi’s
case) as the region, the window
returns to its rectangular shape.
The mouse down event for the
hourglass window in Figure 4
returns the window to its rectangu-
lar shape. If the right mouse button
is clicked, then SetWindowRgn(
Handle, 0, True) is executed.

Creating Complex Shapes
So far we have covered simple
shapes and combinations of these
simple shapes. Some corporate
logos can be complex designs
involving straight lines and curves.
They can also have two parts that
are not connected. In these cases
we can create our window using
paths. A path defines a shape as a
series of drawing operations.
Essentially, an outline of an area.
We can draw these paths using a
series of lines, curves and arcs. By
combining these elements, we can
outline anything. To create a path,
call BeginPath, passing it the device
context (Canvas.Handle) of the
window. Once the program calls
BeginPath, all drawing to that
device context does not appear on
the display (or the printer).
Instead, the drawing forms the
path. When the path is complete,
simply call EndPath. When you call
EndPath the path becomes the cur-
rent path for the device context.
We then turn the path (or paths)
into a region and assign that region
to the window. If you think this
sounds easy, it is. The only difficult
part is defining the path.

How would you draw the outline
of the letter “D” using straight lines
and curves? We’ll use a sans-serif

➤ Figure 4

font (like Arial or Helvetica) to
make the job easier. Obviously we
need a vertical line on the left, that
runs the height of the character.
Extending to the right, on both the
top and bottom of the vertical line,
we should place two shorter hori-
zontal lines. We then can connect
the right ends of the two short
lines with an arc. The arc should
run clockwise, from the top to the
bottom, starting at the 12 o’clock
position and ending at the 6
o’clock position.

The code would look something
like Listing 6. All the drawing
should be done using the Windows
API. Some of the functions are the
same as Delphi’s canvas functions,
except they have one extra
parameter. That parameter, which
is the first one, is the handle of the
device context we’re drawing on.

Value Description

RGN_AND Creates the intersection of the two combined regions

RGN_COPY Creates a copy of the region identified by hrgnSrc1

RGN_DIFF Combines the parts of hrgnSrc1 that are not part of hrgnSrc2

RGN_OR Creates the union of two combined regions

RGN_XOR Creates the union of two combined regions except for any
overlapping areas

➤ Table 2: Combine modes

procedure TfrmDelphi.FormCreate;
var
RgnPts: array[0..12] of TPoint;
Region1: hRgn;

Const
nPts: integer = 3;

begin
BeginPath(Canvas.Handle);
{ Outside 'D' }
MoveToEx(Canvas.Handle, 49, 0, nil);
RgnPts[0] := Point(62, 2); // control point
RgnPts[1] := Point(79, 18); // control point
RgnPts[2] := Point(81, 36); // end point
PolyBezierTo(Canvas.Handle, RgnPts[0], nPts);
LineTo(Canvas.Handle, 81, 53);
RgnPts[0] := Point(79, 70); // control point
RgnPts[1] := Point(64, 86); // control point
RgnPts[2] := Point(47, 88); // end point
PolyBezierTo(Canvas.Handle, RgnPts[0], nPts);

RgnPts[0] := Point(47, 88);
RgnPts[1] := Point(0, 88);
RgnPts[2] := Point(0, 0);
RgnPts[3] := Point(49, 0);
PolylineTo(Canvas.Handle, RgnPts[0],4);
. . . { More drawing here } . . .
{ 'I' }
RgnPts[0] := Point(464, 0);
RgnPts[1] := Point(491, 0);
RgnPts[2] := Point(491, 88);
RgnPts[3] := Point(464, 88);
Polygon(Canvas.Handle, RgnPts[0], 4);
EndPath(Canvas.Handle);
{ Create region, boundaries from the Path }
Region1 := PathToRegion(Canvas.Handle);
{ Assign the region to the window }
SetWindowRgn(Handle, Region1, True);

end;

➤ Listing 6

22 The Delphi Magazine Issue 25

These drawing functions define points in a path in Windows 95 and NT:

CloseFigure Closes an open figure in a path

ExtTextOut Draws a character string using the currently selected font

LineTo Draws a line from the current position up to, but not
including, the specified point

MoveToEx Updates the current position to the specified point and
optionally returns the previous position

PolyBezier Draws one or more Bézier curves

PolyBezierTo Draws one or more Bézier curves

Polygon Draws a polygon consisting of two or more vertices
connected by straight lines

Polyline Draws a series of line segments by connecting the points
in the specified array

PolylineTo Draws one or more straight lines

PolyPolygon Draws a series of closed polygons

PolyPolyline Draws multiple series of connected line segments

TextOut Draws a character string using the currently selected font

These additional drawing functions are available in Windows NT only:

AngleArc Draws a line segment and an arc

Arc Draws an elliptical arc

ArcTo Draws an elliptical arc

Chord Draws a chord

Ellipse Draws an ellipse

Pie Draws a pie-shaped wedge

PolyDraw Draws a set of line segments and Bézier curves

Rectangle Draws a rectangle

RoundRect Draws a rectangle with rounded corners

➤ Table 3: Drawing functions available for Windows 95 and NT

Since we’re drawing on the canvas,
we pass Canvas.Handle as the first
parameter. By the way, the API
offers some drawing functions that
the Canvas in Delphi doesn’t sup-
port. These functions may make
the operation easier.

In Listing 6, I started at the top,
and drew a bezier curve to almost
half way down the right side. Why
did I use PolyBezierTo instead of
Arc? Arc is not available for con-
structing paths in Windows 95. It is,
however, available in Windows NT.
Table 3 outlines the subset of draw-
ing functions available under Win-
dows 95. All the functions listed in
Table 3 are available for NT.

By using PolyBezierTo instead of
PolyBezier, after drawing the curve
the pen position is placed at the
last point drawn. This eliminates
having to keep calling MoveTo. After
completing the arc, I then draw a
very short vertical line on the right.
This will make the letter look slim-
mer and taller. Another bezier
curve is then drawn from this point
to the bottom, in a clockwise direc-
tion. I then finish by drawing the
three straight lines, first across the
bottom, then up the left side,
across the top, finally ending at the
point where the first curve started
from. This defines the path that
outlines the letter “D”.

Instead of making three succes-
sive LineTo calls, I could have used
PolyLineTo instead. PolyLineTo
takes an array of TPoint. The first
element is the starting point for the
first line. The second element is
the end point of the first line, the
third the end point of the second
line, and so on. PolyLineTo essen-
tially calls MoveTo, followed by one
or more calls of LineTo.

Figure 5 shows Delphi spelled
out in block letters. The outside
and inside outlines of the letters
“D” and “P” were created just like
our example above. The letters
“E”, “L”, “H” and “I” were created
with the polygon function call.
This created several complex
paths on the canvas. This is also
how we create a window with two
or more shapes or sections that
are not connected. The only thing
left is to create a region from the
path or paths. This is done with the
PathToRegion function. We then call
SetWindowRgn as before.

Using Text
There’s an easier way to place text
on the screen than forming each
letter like we did in the above
example. I did it the hard way
above to show you how to com-
bine straight lines and curves to
create complex shapes. What’s the
easier way? Use fonts. You can
output TrueType text right on the
canvas. Each TrueType character
is a vector outline: a series of lines
and curves. Windows normally
fills in this outline so you may
never have realized that TrueType
fonts are outlines. This is how
Windows can create any size char-
acter, from 4 to 100 points or more,
all with one outline for each char-
acter. With each point size the
character is stretched proportion-
ately and there are no jaggies to
worry about.

Non-TrueType fonts, on the
other hand, are bitmap images and
are limited to only those sizes of
characters stored in the font file. In
larger sizes, these characters will
have jaggies, as they are only
designed to be used as screen
fonts.

Figure 6 displays a logo that I
remember seeing somewhere. The

24 The Delphi Magazine Issue 25

➤ Figure 6

➤ Figure 5

Delphi 3. The code is pretty well
commented, so you shouldn’t
have any problem following it.
Since our main purpose behind
creating an oddly shaped form was
to us it as a splash screen, I used
the last example as the splash
screen for the demo program. The
code in the project file and in the

logo is primarily made of text, with
a few polygons. My apologies to
our esteemed Editor for not match-
ing the fonts precisely. I wanted to
stay with the Windows default
Arial and Times New Roman fonts
that all readers would have
installed on their computers. It’s a
fairly close match. Obviously, the
two underlines are polygons.
“THE” at the left is also a series of
polygons. This allowed me to
create the rotated text without the
use of a RotateText function. It also
allowed me to create the extra
heavy (fat) strokes of the letters,
something that the Arial font
couldn’t do. Part of the code is
shown in Listing 7.

Don’t bother setting a color for
the font, it won’t be used. Remem-
ber, once the program calls
BeginPath, all drawing to that
device context does not appear on
the display. The window created
will always have the color assigned
to the Form.Color property.

If the letters are all the same
color, just set the Form.Color
property to the color you want. If
you need to have two or more
colors like I did here, in the
FormPaint event, paint the colors
you need.

Listing 8 shows the code for the
Form.Paint event. I set the
Form.Color to black, then paint one
large red rectangle that takes up
most of the top half of the window.
There is a smaller red rectangle to
cover the descender of the “p”.
The small red squares between the
letters of “MAGAZINE” are painted
with a series of red rectangles. By
the way, the outline for the
squares is done with the Arial font.
The square is ANSI character
#0183. Make sure NumLock is turned
on, then hold down the Alt key
while typing 0183using the number
pad. Release the Alt key and the
character will appear.

Wrap Up
The complete source code for
everything discussed here is
assembled in demo program
REGIONS.EXE and of course is on
the floppy disk included with this
issue. The program was completed
with Delphi 2.0 and should work in

main form file shows how to use a
window as a splash screen.

At the start of the article I men-
tioned that we could create a
round radar screen or resource
gauge that the user can drag to any
position on the screen. If the
window doesn’t have a title bar,
like our blue oval, how can the user

procedure TfrmText.FormCreate;
var
RgnPts: array[0..11] of TPoint;
Region1: hRgn;

begin
BeginPath(Canvas.Handle);
SetBkMode(Canvas.Handle, TRANSPARENT); { allows us to outline letters }
with canvas do
begin
{ Use canvas to paint 'Delphi' }
Font.Style := [fsBold];
Font.Name := 'Times New Roman';
Font.Size := 130;
TextOut(62, 0, 'Delphi');
. . . { More drawing here } . . .

end;{ canavs drawing }
{ Create first underline }
MoveToEx(Canvas.Handle, 0, 165, nil);
LineTo(Canvas.Handle, 311, 165);
LineTo(Canvas.Handle, 311, 175);
LineTo(Canvas.Handle, 0, 175);
LineTo(Canvas.Handle, 0, 165);
EndPath(Canvas.Handle);
{ Create region, boundaries from the Path }
Region1 := PathToRegion(Canvas.Handle);
{ Assign the region to the window }
SetWindowRgn(Handle, Region1, True);

end;

➤ Listing 7

September 1997 The Delphi Magazine 25

unit bowtie;
interface
uses
Windows, Messages, SysUtils, Classes, Graphics,
Controls, Forms, Dialogs, ExtCtrls;

type
TfrmBowTie = class(TForm)
private
procedure WMNCHitTest(Var Msg: TMessage);
message WM_NCHITTEST;

public
end;

var frmBowTie: TfrmBowTie;
implementation
{$R *.DFM}
procedure TfrmBowTie.WMNCHitTest(Var Msg: TMessage);
begin
{ Respond to left mouse button down, so we can drag window }
if GetAsyncKeyState(VK_LButton) < 0 then
Msg.Result := HTCaption

else
Msg.Result := HTClient;

end;
end.

procedure TfrmText.FormPaint(Sender: TObject);
begin
with canvas do begin
{ Paint red areas of form }
Pen.Color := clRed;
Brush.Color := clRed;
Brush.Style := bsSolid;
Rectangle(60, 0, width, 160);// Delphi
Rectangle(312, 155, 365, 195);// P extension
Rectangle(48, 195, 76, 260);// Dot after M
Rectangle(126, 195, 154, 260);// Dot after A
Rectangle(205, 195, 233, 260);// Dot after G
Rectangle(283, 195, 309, 260);// Dot after A
Rectangle(355, 195, 382, 260);// Dot after Z
Rectangle(410, 195, 438, 260);// Dot after I
Rectangle(486, 195, 516, 260);// Dot after N

end;
end;

➤ Listing 8

drag it? The code that allows the
user to drag the window is in List-
ing 9. The procedure WMNCHitTest
captures the mouse button down
event and if the mouse button is
the left one, reports to windows
that the user clicked on the title
bar. Windows then allows the
window to be dragged.

That wraps up all the loose ends.
Information can be found in the
Win32 Programmer’s Reference
(WIN32.HLP) included with Delphi
2.0 on any of the Windows API func-
tions discussed in this article.

Steven J. Colagiovanni is a Photo-
graphic Technician with a major
photographic manufacturer and
is currently living in Los Angeles,
California. He is a member of the
Los Angeles Delphi User Group
and programs in Delphi as a
hobby. He can be reached at
Steve_Cola@compuserve.com

➤ Listing 9

	Simple Shapes
	Polygons
	Who Put A Hole In My Window
	Including the Titlebar
	Creating Complex Shapes
	Using Text
	Wrap Up

